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A B S T R A C T

This paper proposes a multistage floorplan reconstruction approach from RGB images and a dense 3D mesh,
called FloorUSG, by combining 2D plane instances and 3D plane primitives. In primitive detection, plane
instances inferred from images complement the results of traditional 3D plane detection well. And in the
optimization, both the plane confidence and the geometric quality of data are considered to select the optimal
subset from the candidates. Different from existing methods that rely on delicate corner detection from a
planar graph or pure geometric 3D plane detection, our framework accurately recovers the location of the
floorplan via 2D–3D primitive fusion. Experimental results indicate that our method has the ability to recover
detailed structures of scenes of different scales and can reconstruct the floorplan from imperfect data with
high robustness compared to the state-of-the-art algorithms.
1. Introduction

A floorplan reflects the overall layout of the indoor facade structure
inside a 3D building. And the floorplan reconstruction is an important
research area in the field of computer vision and photogrammetry
due to its great potential in robot localization (Boniardi et al., 2017;
Wang et al., 2019), indoor scene understanding (Ziran and Marinai,
2018; Pintore et al., 2020b), reproduction (Liu et al., 2015) and so
on. However, high-quality floorplan generation in industry is labor-
intensive, and fully automated floorplan reconstruction is an urgent
need. In this task, the core challenge lies in recovering an accurate and
complete floorplan from a building interior with a complex structure
and unavoidable occlusion.

Single panoramic images and point clouds are the two most com-
mon sources for floorplan reconstruction. When a panoramic image is
used as input, floorplan generation is often converted into the detection
of boundaries and some methods (Yang et al., 2019; Pintore et al.,
2020a; Sun et al., 2019) infer the floorplan via end-to-end networks.
These methods are quick at inference but are difficult to scale to large-
scale scenes such as shopping malls. When inputting point clouds,
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the detection-then-selection strategy is preferred. The selection stage is
always defined as an optimization problem and the difference between
methods mainly lies in the detection phase. Some work (Han et al.,
2021; Fang et al., 2021) detects and regularizes primitives from point
clouds while other work (Liu et al., 2018; Chen et al., 2019; Stekovic
et al., 2021) uses the network to infer primitives from the point density
map. However, due to the interference of data acquisition equipment,
illumination, and weak scene textures, the point cloud inevitably con-
tains noise and missing areas, which may affect the robustness of the
methods. In this paper, we aim to reconstruct floorplans from indoor
scenes with different scales, and thus, the point cloud is more suitable
to be adopted than a single panorama. For indoor scenes, the point
cloud is usually obtained by mobile scanning using RGB-D devices such
as Kinect or image-based reconstruction using SfM and MVS. Either
way, the calibrated images (including camera intrinsics and poses) can
be obtained and the dense mesh is available after meshing the point
cloud.

This paper takes calibrated images and a dense mesh as input and
integrates planes inferred from images with planes detected from 3D
data into a unified regularization and optimization framework. First,
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we use an off-the-shelf semantic segmentation network to infer images
and segment indoor facades from point cloud sampling from the mesh.
The labels of the point cloud are obtained by projecting points onto
their visible images and then max-voting. Note that we take the mesh
as input is because the mesh can disambiguate the visibility of points.
Then, we detect plane primitives from indoor facade point clouds as
a whole and locally using 2D plane instances inferred from a plane
detection network. Finally, the floorplan is obtained through global
optimization by considering both the plane confidence of points and
the quality of the point cloud.

The main contributions of our work include the following:

• We propose a multilevel plane detection solution combining the
semantics of images and the geometry of point clouds, which
captures more detailed structures and enhances the robustness of
traditional plane detection methods.

• We cast the floorplan reconstruction as a global optimization
balancing the quality of the point cloud with the plane confidence
of points derived from images.

• We propose an effective pipeline to generate floorplans from
indoor scenes with high robustness to imperfect input data and
inferences from the network by embedding the plane semantics
inferred through the network into the reconstruction process
based on geometric optimization.

2. Related work

The study of indoor floorplan reconstruction can be roughly divided
into three categories: classical techniques, end-to-end networks, and
hybrid schemes. Here, we briefly review each category.

Classical techniques. Some floorplan generation methods (Cabral and
Furukawa, 2014; Pintore et al., 2018) rely on basic image process-
ing techniques and point cloud reconstruction processes (Kangni and
Laganiere, 2007; Furukawa and Ponce, 2009) to obtain semantic seg-
mentation in buildings. Then, they apply appropriate optimization
algorithms to obtain the floorplan. Cabral and Furukawa (2014) cast
the optimization as the shortest path problem, and Pintore et al. (2018)
obtained the floorplan by solving a nonlinear least squares problem.
However, these solutions only handle closed topologies and rely on the
quality of the point cloud. In addition, indoor reconstruction provides
different schemes using point clouds as input. In view of the fact that
the wall is generally perpendicular to the ground, some work (Han
et al., 2021; Ochmann et al., 2016, 2019; Cui et al., 2019) first fit
vertical planes from the point cloud, followed by projecting them to
the ground to generate line segments. The 2D space is then divided
into smaller cells by extending line segments. Finally, the floorplan
is obtained by minimizing an energy optimization function. Some
of them (Ochmann et al., 2016, 2019; Cui et al., 2019) used room
segmentation to construct the data item and marked the state of cells,
followed by merging ‘active’ cells as final rooms after optimization. Han
et al. (2021), the most relevant work to us, used the indoor facade point
cloud to support the data item and obtained the floorplan by marking
and selecting the segments with the ‘true’ label. However, these meth-
ods are sensitive to plane detection and lack sufficient robustness to
imperfect data. Compared with Han et al. (2021), we deeply integrated
2D plane instances inferred from images into 3D plane detection and
optimization, making the method have higher robustness and more
accurate reconstruction results for real indoor scenes.

End-to-end networks. With the development of neural networks, end-to-
end learning has been widely applied in scene modeling. Considering
that panorama provides a wide range of contexts, lots of work (Sun
et al., 2021; Pintore et al., 2020a; Zou et al., 2018; Yang et al., 2019;
Sun et al., 2019) have used an end-to-end network to predict the
layout from panoramic images. Some work (Yang et al., 2019; Pintore
et al., 2020a) transformed the panorama to other views from which
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the floorplan was inferred. Yang et al. (2019) fused features extracted
from the original panoramic view and ceiling view, and output the
floorplan probability maps, which were then regularized to obtain the
layout with Manhattan restriction. Pintore et al. (2020a) used a single
branch to predict dense 2D segmented maps from ceiling and floor
views, followed by a simple operation to obtain layouts. Instead of
combining multiple views, Sun et al. (2019, 2021) represented the
input as a 1D vector, where each dimension stored the prediction in-
formation relating to the corresponding column in the image. Sun et al.
(2019) first used LSTM (Hochreiter and Schmidhuber, 1997) to capture
global information and output three 1D vectors representing the scene
boundaries. The layout was obtained after postprocessing. Later, Sun
et al. (2021) introduced a new horizon-to-dense module to expand each
dimension of the vector to all horizontal pixels, and finally obtained the
dense panoramic depth map. The abovementioned methods recovered
the layout from a single panorama, making it difficult for them to
handle large indoor scenes such as shopping malls.

Hybrid schemes. Due to the great potential of deep learning in extract-
ing features and the better interpretability of optimization techniques,
many methods employ a hybrid technical framework. Some state-of-
the-art work (Liu et al., 2018; Chen et al., 2019; Phalak et al., 2020;
Stekovic et al., 2021) first inferred primitive information (e.g., corners,
edges, room segments) using a network and then applied optimization
strategies to obtain floorplans. Chen et al. (2019) and Stekovic et al.
(2021) took the density map projected from the point cloud as input,
and obtained the room segments by relying on MaskRCNN (He et al.,
2017). The former (Chen et al., 2019) integrated the corner and edge
likelihoods from DRN (Yu et al., 2017) into an optimization function
with the room segments as constraints, and solved the problem via the
sequential roomwise shortest path. The latter (Stekovic et al., 2021)
obtained a set of room proposals from room segments and then used
the Monte Carlo Tree Search algorithm (Browne et al., 2012; Coulom,
2006) to find the optimal subset and refine their position and shape.
Limited by the image resolution, it is difficult for these methods to
capture detailed structures. Rather than relying on the point density
map, Fang et al. (2021) detected vertical planes from point clouds
and projected them onto the X–Y plane to partition the 2D space
into smaller cells. They first extracted the scene boundaries and then
generated the floorplan via graph-cut (Boykov et al., 2001) using room
segments inferred by the network as the unary term. Solarte et al.
(2021) embedded the single room layout extracted from the network
into a visual SLAM system, and estimated multiroom layout geometries.
Our method belongs to this category, and thanks to the combination
of 2D semantics and 3D geometry, our approach offers an effective
pipeline to obtain floorplans robustly and in detail.

3. Overview

Our algorithm takes the calibrated images and dense mesh where
the 𝑍-axis is aligned with the gravity direction as input and outputs
the floorplan. The core idea behind our method is to deeply integrate
the 2D plane instances and the 3D plane primitives into a unified
framework.

The proposed pipeline has three phases: scene segmentation, indoor
facade candidate generation, and indoor facade selection (see Fig. 1).
First, a semantic segmentation network is used to segment images
and we segment indoor facades from point cloud sampling from the
dense mesh. The labels of the point cloud are obtained by projecting
points onto their visible images and max-voting. Then, we segment
plane instances from images via a plane detection network, followed by
detecting and regularizing 3D planes from indoor facade point clouds
holistically and locally using plane instances. Finally, we design a
global optimization function combining plane confidences and geomet-
ric quality of the point cloud and obtain the floorplan by minimizing
the energy function with integer linear programming with constraints.
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Fig. 1. Overview of FloorUSG. There are three phases: scene segmentation (brown), indoor facade candidate generation (purple) and indoor facade selection (green). The blue
arrows indicate that plane instances are fused at different phases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 2. An example of indoor facade candidate generation and selection on Area 6 of the S3DIS dataset (Armeni et al., 2017). (a) is the segment set detected from the indoor
facade point cloud using RANSAC (Schnabel et al., 2007) directly. (b) is the segment set derived from 2D plane instances. (c) is the segment set after fusing (a) and (b). The black
represents the general scene structures, which comes from (a). The red is from part of (b) and complements more details, especially the areas circled with purple boxes. (d) is
candidates by extension and intersection from (c). (e) is the final floorplan after optimization. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
4. Scene segmentation

Indoor scenes often contain clutter that interferes with indoor fa-
cade detection and inference. Therefore, we first segment the indoor
facade from the input mesh. There are many selectable strategies, such
as direct segmentation on 3D data, or segmentation on images first and
then projection onto the mesh to fuse labels. Considering that we need
to know the correspondence between 3D data and image pixels, here
we use the public semantic segmentation network DeepLabv3+ (Chen
et al., 2018) to segment images and uniformly sample the input mesh in
space as a point cloud. Then, we compute the visibility of points relying
on the mesh. In detail, if a line segment 𝑠 passes through a point and a
camera optical center while it does not go through other facets on the
mesh, this point is visible in the image which intersects the segment 𝑠,
and the label of this point is marked as the same as the pixel which is
the intersection of image and segment 𝑠. The correspondence between
this point and the pixel is retained for the next stage. A point may be
visible in multiple images, and the final label of the point is determined
via max-voting. We take the points labeled as indoor facades as the
subsequent input. It should be noted that due to the subsequent fusion
and global optimization steps, we do not need very high-quality indoor
facade segmentation results, as shown in the experiments.

5. Indoor facade candidate generation

At this stage, we aim to combine the indoor facade point cloud and
images to generate as complete candidate line segments as possible.
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RANSAC (Schnabel et al., 2007) can detect accurate planes from point
clouds with noise and outliers. However, this probabilistic approach
may miss small planes or planes with sparse supporting points, espe-
cially when handling large-scale point clouds. Therefore, we add the
plane instances inferred from images to enhance the detection results
of traditional RANSAC (Schnabel et al., 2007).

5.1. Indoor facade candidates from point cloud

In view of the outliers and noise in the point cloud, we first use
RANSAC (Schnabel et al., 2007) to fit vertical planes from the indoor
facade point cloud, followed by projecting them onto the X–Y plane
to obtain the line segments. These projected segments contain some
unsatisfactory detection and thus, it is necessary to regularize them
to produce cleaner results. In principle, two segments that are close
enough and have a small angle are more likely to belong to a true
segment. Therefore, we merge two line segments 𝑠𝑖 and 𝑠𝑗 when the
following two conditions are satisfied:

𝜃𝑖𝑗 ≤ 𝜃1, (1)

𝑑𝑖𝑠𝑖𝑗 ≤ 𝛼 ⋅min(𝑑(𝑠𝑖), 𝑑(𝑠𝑗 )), (2)

where 𝜃𝑖𝑗 and 𝑑𝑖𝑠𝑖𝑗 are the angle and distance between 𝑠𝑖 and 𝑠𝑗
respectively. 𝑑(𝑠) is the average distance between the 2D supporting
points of line segments 𝑠𝑖 and 𝑠𝑗 , and we set 𝜃1 = 10◦ and 𝛼 = 5 in our
experiments.
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Specifically, the two segments 𝑠𝑖 and 𝑠𝑗 with the minimum angle
are considered first. If they meet the above conditions, we fit a plane
from their supporting points using PCA (Wold et al., 1987) and acquire
a new segment 𝑠𝑘 by projection. The above process is iterated until
no segment satisfies the conditions, and finally, we obtain a trim line
segment set 𝑆1 (see Fig. 2(a)). The obtained set 𝑆1 contains large indoor
facade structures while missing many details.

5.2. Indoor facade candidates from images

The RGB image contains rich semantic information, which has great
potential to enhance geometric detection. Lots of work (Yu et al., 2019;
Liu et al., 2019; Qian and Furukawa, 2020) recover 3D scenes with
predicted 2D plane instances and their 3D parameters from a single
image. The task of predicting 3D plane parameters from just a single
image is difficult to generalize well on various datasets, however, owing
to the advantages of deep learning in image processing, robust 2D plane
instance segmentation is feasible.

We use publicly available PlaneRCNN (Liu et al., 2019), which also
targets indoor scenes, to segment images. Since the results of plane
detection are not completely accurate, we only retain instances with
a ‘valid’ pixel number greater than 𝜖 ⋅ #𝑛𝑢𝑚𝑠, and project them onto
the indoor facade point cloud to obtain corresponding point sets. Then,
we perform local RANSAC (Schnabel et al., 2007) on each point set,
followed by projecting fitted planes onto the ground to obtain another
line segment set. In our experiments, we set 𝜖 = 5% and #𝑛𝑢𝑚𝑠 is the
number of pixels in an image. Note that the ‘valid’ here means that
the pixels should belong to the indoor facade label. In addition, the
point set corresponding to a 2D plane instance may contain some noise
as a result of incorrect image inference. Thus, instead of PCA (Wold
et al., 1987), which is more susceptible to noise, we adopt local
RANSAC (Schnabel et al., 2007) to fit the most likely 3D plane from
the point set.

When there are many common viewing regions between images,
one 3D plane may be detected in multiple images, which is unknown
to the plane segmentation network. As a result, there is considerable
redundancy in the above line segment set (e.g. one 3D plane may
be represented by multiple segments that are very close together),
and here we adopt a fast reduction strategy to clean them. We begin
with the 𝑋-axis, and produce 180◦∕𝜃2 bins at intervals of 𝜃2. Then we
calculate the angle between segments and the 𝑋-axis (taking the angle
within 180◦) and put them in the corresponding bin. Starting from the
first bin, we iteratively merge the segments in the two adjacent bins
if the segments satisfy Eqs. (1) and (2). 𝜃2 is set to the same value as
𝜃1 in Eq. (1). Finally, we obtain the second line segment set 𝑆2 (see
Fig. 2(b)). The obtained set 𝑆2 contains more detailed structures but
lacks globality due to the local plane fitting.

5.3. Fusion of different candidate sets

Using RANSAC (Schnabel et al., 2007) to fit planes directly from
3D point clouds makes use of more global information in the scene.
It has a strong anti-noise ability, but poor robustness in detecting
small structures. In contrast, the method of fitting and reducing 3D
planes from 2D plane instances pays more attention to the local scene
structures. It has a stronger ability to recover details, while having a
lower tolerance to noise. As seen in Fig. 2(b), the obtained segments
retain some small structures of scenes. However, long segments tend
to be detected as several small ones owing to the local view of images,
which is not conducive to the subsequent optimization. In view of these,
we implement the following strategy to combine the strengths of both.

First, we merge the image detected planes into the geometric de-
tected planes. For each segment 𝑠𝑖 ∈ 𝑆2, if ∃ 𝑠𝑗 ∈ 𝑆1, where 𝑠𝑖 and 𝑠𝑗
satisfy Eqs. (1) and (2), we delete 𝑠𝑖 from 𝑆2 and merge its supporting
point set 𝑃𝑖 into the set 𝑃𝑗 of 𝑠𝑗 , followed by marking the plane ID 𝐼𝐷𝑘
of point 𝑝 ∈ 𝑃 as 𝑗.
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𝑘 𝑖
Fig. 3. Explanations of valid lengths in different energy terms in Eq. (3). The points
with different colors are 2D supporting points of the candidate (colored with light
green). In the process of inferring plane instances from images, the red and yellow
points belong to two inferred planes and the black points belong to no plane. As
shown in the figure, the valid lengths are different in different energy terms. The
lengths marked as 1, 2, and 3 are valid covered lengths in Eq. (6) while others are
invalid because the distance between two points is larger than the threshold. The length
marked as 4 is the valid confidence length in Eq. (7). Because the number of red points
is greater, the red points are picked and the length of the red points is defined as
the valid length. By introducing 𝐸3 (Eq. (7)), our method increases the attention to
segments with uneven or sparse supporting points. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Next, we collect unconsolidated image detected planes and add
them into the segment candidate sets. We traverse the point 𝑝 in the
indoor facade point cloud that meets ∀𝑃𝑖, 𝑠𝑖 ∈ 𝑆1, 𝑝 ∉ 𝑃𝑖. If this point
𝑝 is the supporting point of segment 𝑠𝑗 , 𝑠𝑗 ∈ 𝑆2, we add 𝑠𝑗 into the set
𝑆1 and delete 𝑠𝑗 from 𝑆2. The plane ID 𝐼𝐷𝑘 of point 𝑝𝑘 ∈ 𝑃𝑗 is marked
as 𝑗.

Finally, we obtain the line segment set 𝑆 = 𝑆1 containing more de-
tails and global information. As shown in Fig. 2(c), the black segments
are from the initial 𝑆1, which detect the general scene structures. The
red segments are from the initial 𝑆2, which find more details, especially
in the areas highlighted by purple boxes. We extend segment 𝑠𝑖 ∈ 𝑆 to a
certain length, and use the 2D boundary box of the scene to crop them.
The complete indoor facade candidate set 𝐹 is generated by calculating
the intersection of each two line segments (see Fig. 2(d)).

The fusion of plane semantics inferred from images and direct
geometric detection helps to obtain a complete indoor facade candidate
set more robustly than the traditional plane detection method and
reduces the adverse effects of uneven or sparse point cloud density on
the subsequent optimization.

6. Indoor facade selection

After the above stage, we obtain the candidate line segment set
𝐹 = {𝑓𝑖} and the corresponding supporting point set 𝑃 = {𝑃𝑖}. Now,
we aim to select the optimal subset from the set 𝐹 to form the final
floorplan.

We define an energy optimization function and the floorplan is
obtained by minimizing this function. Han et al. (2021) adopted a
similar strategy to solve the floorplan reconstruction, but they only
made use of the quality of the point cloud. As a result, their approach
had a weak ability to distinguish the false plane with noise and the
true plane with sparse supporting points. In contrast, the proposed
optimization function in our paper takes into account the high-level
semantics of images and increases the attention of small planes and
planes with sparse supporting points.

6.1. Objective function

We take both the quality of the point cloud and the plane instances
inferred from images into consideration for the sake of better data
balance. In detail, we introduce a binary variable 𝑥𝑖 ∈ {0, 1} for each
candidate 𝑓𝑖 ∈ 𝐹 , and design an energy function 𝐸 consisting of four
items: point fidelity term 𝐸 , point coverage term 𝐸 , plane confidence
1 2



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 490–501J. Han et al.
Fig. 4. Examples of the different selections of segments connected by one intersection. (a) displays four segments sharing one intersection 𝑣𝑖. In others, the light green represents
that the segment is selected, while the gray means the opposite. For the sake of model closure, (g) is forbidden and the others are allowed. In addition, (c), (e) and (f) introduce
a corner with 𝐶𝑜𝑟𝑛𝑒𝑟(𝑣𝑖) = 1.
term 𝐸3, and model complexity term 𝐸4 with {𝑥𝑖} as the independent
variable:

𝐸 =
4
∑

𝑘=1
𝜆𝑘 ⋅ 𝐸𝑘, (3)

where 𝜆𝑘 is the balance factor, and we set 𝜆1 to 0.4 with the rest to 0.2
in our experiments.

Our goal is to minimize the function 𝐸 by determining the value of
{𝑥𝑖}. The final floorplan is obtained after selecting candidate 𝑓𝑖 with
the value 𝑥𝑖 = 1.

Point fidelity term 𝐸1. This is the most basic term of the function,
reflecting the supporting strength and the fitting accuracy of the sup-
porting point set 𝑃𝑖 to the candidate 𝑓𝑖. The term 𝐸1 is defined as:

𝐸1 = 1 − 1
𝑁𝑝

𝑁𝑓
∑

𝑖=1
(
∑

𝑝𝑗∈𝑃𝑖

1 −
min(𝑑𝑖𝑠(𝑓𝑖, 𝑝𝑗 ), 𝜌)

𝜌
) ⋅ 𝑥𝑖, (4)

where 𝑁𝑝 is the total number of points in 𝑃 , 𝑁𝑓 is the number of
candidates, 𝑑𝑖𝑠(𝑓𝑖, 𝑝𝑗 ) is the distance between the 2D projection of point
𝑝𝑗 and segment 𝑓𝑖, and 𝜌 is a distance threshold providing a uniform
constraint for all candidate segments.

Specifically, for each segment 𝑓𝑖, the point 𝑝𝑗 is considered only
when 𝑑𝑖𝑠(𝑓𝑖, 𝑝𝑗 ) < 𝜌. The smaller the 𝑑𝑖𝑠(𝑓𝑖, 𝑝𝑗 ) is, the more accurate the
point-to-segment fitting, and the more supporting points that satisfy the
distance condition, the stronger the point-to-segment support. When
points fully support and fit all line segments, the point fidelity can be
maximized, corresponding to the minimum 𝐸1 = 0. In our experiments,
we set 𝜌 = 3 ⋅ 𝑑𝑖𝑠(𝑓 ) with:

𝑑𝑖𝑠(𝑓 ) = 1
𝑁𝑝

∑

𝑓𝑖∈𝐹

∑

𝑝𝑗∈𝑃𝑖

𝑑𝑖𝑠(𝑓𝑖, 𝑝𝑗 ). (5)

Point coverage term 𝐸2. Due to the occlusion and the weak textures in
real scenes, the obtained point cloud inevitably contains some missing
areas, which should also be considered during reconstruction. This term
is designed to balance the noise and missing in the point cloud, which
is defined as:

𝐸2 =
1
𝑁𝑓

⋅
𝑁𝑓
∑

𝑖=1
(1 −

𝑙𝑒𝑛𝑐𝑜𝑣(𝑓𝑖)
𝑙𝑒𝑛(𝑓𝑖)

) ⋅ 𝑥𝑖, (6)

where 𝑙𝑒𝑛(𝑓𝑖) is the length of segment 𝑓𝑖, and 𝑙𝑒𝑛𝑐𝑜𝑣(𝑓𝑖) is its covered
length.

The 2D supporting points are projected to the corresponding seg-
ment 𝑓𝑖 to obtain the projection set 𝑃𝑃𝑖, and the distribution of 𝑃𝑃𝑖
reflects the extent to which the segment 𝑓𝑖 is covered. We calculate
the distance between adjacent points in 𝑃𝑃𝑖 and mark the distance
as valid if it is less than 𝜇 ⋅ 𝑑𝑒𝑛 (𝑑𝑒𝑛 is the density of supporting
points). The 𝑙𝑒𝑛𝑐𝑜𝑣(𝑓𝑖) is obtained by adding up all the valid distances.
When points cover all segments, the point coverage can be maximized,
corresponding to the minimum 𝐸2 = 0. In our experiments, we set
𝜇 = 5.

Plane confidence term 𝐸3. The above two energy terms mainly evaluate
the quality of the point cloud. For some noise and regions with sparse
supporting points in the scene, it is difficult to effectively distinguish
them only by considering the geometric characteristics of the point
cloud.
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Thus, we introduce this term, which measures how much confidence
a candidate belongs to a plane instance inferred from images, to boost
the robustness of the method. It is defined as:

𝐸3 = 1 − 1
𝑁𝑓

⋅
𝑁𝑓
∑

𝑖=1
(
𝑁 𝑖

𝑐𝑜𝑛𝑓

𝑁 𝑖
𝑝

⋅
𝑙𝑒𝑛𝑐𝑜𝑛𝑓 (𝑓𝑖)
𝑙𝑒𝑛(𝑓𝑖)

) ⋅ 𝑥𝑖, (7)

where 𝑁 𝑖
𝑝 is the number of supporting points of segment 𝑓𝑖.

Theoretically, a candidate corresponds to one or zero planes, how-
ever, due to the fact that the instance segmentation network is not
completely accurate, a candidate may contain supporting points be-
longing to more than one plane instance. Thus, in the supporting point
set of candidate 𝑓𝑖, we group the points with the same plane ID into
a cluster and pick one cluster with the largest number of points. 𝑁 𝑖

𝑐𝑜𝑛𝑓
is defined as the size of this cluster, and 𝑙𝑒𝑛𝑐𝑜𝑛𝑓 (𝑓𝑖) is defined as the
maximum distance of the projection of two points in this cluster on
𝑓𝑖. In this term, we take into account the number and distribution of
points, and when a segment 𝑓𝑖 is fully covered by just one inferred
plane, the plane confidence can be maximized, corresponding to the
minimum 𝐸3 = 0. (see Fig. 3 for further explanation.)

Model complexity term 𝐸4. This term is considered to balance the
model fidelity and complexity. Here, we measure the complexity of the
floorplan with the number of corners, and the more corners there are,
the more complex the model.

In general, an intersection 𝑣𝑖 is connected to four line segments
(except the boundary intersection). In these four segments, a corner is
introduced when two noncollinear segments are added to the floorplan
(see Fig. 4(b)(c)(e)), and we mark 𝐶𝑜𝑟𝑛𝑒𝑟(𝑣𝑖) = 1. Otherwise, 𝐶𝑜𝑟𝑛𝑒𝑟(𝑣𝑖)
is set to 0. We calculate the number of intersections (as 𝑁𝑣) and define
this term as:

𝐸4 =
1
𝑁𝑣

⋅
𝑁𝑣
∑

𝑗=1
𝐶𝑜𝑟𝑛𝑒𝑟(𝑣𝑗 ). (8)

Constraint. The structural characteristics of indoor scenes may be quite
different. For complex large scenes, such as office buildings and shop-
ping malls, one thick indoor facade may connect multiple rooms. To
guarantee the closure of the scenes, we restrict the selection of segments
connected by one intersection 𝑣𝑖 ∈ 𝑉 to not one (see an example in
Fig. 4(g)):

∀𝑣𝑖 ∈ 𝑉 ,
∑

𝑓𝑗∈𝑛𝑒𝑖𝑔(𝑣𝑖)
𝑥𝑗 = 0 𝑜𝑟 2 𝑜𝑟 3 𝑜𝑟 4. (9)

For small-scale home scenes composed of some independent rooms,
the 2-manifold of the house is more conducive to the generation of
topologically consistent structures. Therefore, when dealing with such
scenarios, we constrain the 2-manifold of models as follows:

∀𝑣𝑖 ∈ 𝑉 ,
∑

𝑓𝑗∈𝑛𝑒𝑖𝑔(𝑣𝑖)
𝑥𝑗 = 0 𝑜𝑟 2, (10)

where 𝑛𝑒𝑖𝑔(𝑣𝑖) stores the segments connected by the intersection 𝑣𝑖.

6.2. Optimization

The floorplan reconstruction is formulated as the following opti-
mization:

min𝐸 𝑠.𝑡.
{

Eq. (9) 𝑜𝑟 Eq. (10) (11)

𝑋 𝑥𝑖 ∈ {0, 1} 0 < 𝑖 ≤ 𝑁𝑓
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Fig. 5. Scene segmentation and plane detection on Area 3 of S3DIS (Armeni et al., 2017). (a) displays the indoor facade ground truth (left) and our segmentation result (right).
(b) displays some plane detection results using PlaneRCNN (Liu et al., 2019) without fine-tuning. As seen, there are still many visible errors and noises in scene segmentation and
plane detection. However, due to the multilevel plane discovery and fusion and the global optimization, our algorithm is robust for imperfect inferences from the network.
The Eq. (11) is an integer linear programming problem, and we
solve it using SCIP (Bestuzheva et al., 2021). The constraint is de-
termined according to the characteristics of the scene. Finally, we
put segments with 𝑥𝑖 = 1 together to obtain the final floorplan (see
Fig. 2(e)).

7. Experiments

To comprehensively evaluate the effectiveness of FloorUSG, we
evaluated it on two datasets with different scales and scene structure
characteristics, and compared it with other state-of-the-art methods.
The algorithm was implemented in C++ with the CGAL Library (The
CGAL Project, 2022) and the SCIP solver (Bestuzheva et al., 2021). All
the experiments were performed on a PC with a 4-core Intel Xeon CPU
(3.7 GHz).

7.1. Dataset

FloorUSG was evaluated on two datasets. The first is the S3DIS
dataset (Armeni et al., 2017), which is a large 2D–3D-semantics dataset
with a total of 6 large-scale indoor areas (Area 1-Area 6) and 13 object
classes, and includes offices, lobbies, rooms, exhibition areas, open
spaces, and so on. In all areas, the floor space ranges from 450 m2 (Area
3) to 1700 m2 (Area 5) and the number of disjoint spaces ranges from
24 (Area 3) to 55 (Area 5). The RGB images and corresponding dense
meshes are provided in the dataset and we used them as the input of
our algorithm. In addition, we sampled the dense mesh uniformly in
space as a point cloud and took the points with the ground truth wall,
door, window, column, board labels as our indoor facade ground truth.

The second dataset (we named it HOUSE) includes 100 panoramic
RGB-D scans of small indoor scenes and 2D floorplan ground truth
provided by FloorSP (Chen et al., 2019). Each scene contains multiple
enclosed rooms with an average number of approximately 7, and the
scene area ranges from approximately 40 m2 to 300 m2. Compared with
HOUSE, the scenes of S3DIS (Armeni et al., 2017) are larger with more
complex structures. On the HOUSE dataset, we used Poisson surface
reconstruction (Kazhdan et al., 2006) to generate dense meshes from
point clouds derived from RGB-D scans, and took RGB images and
dense meshes as our input.

7.2. Implementation details

7.2.1. Scene segmentation
We used pretrained DeepLabv3+ (Chen et al., 2018) trained on

ImageNet (Deng et al., 2009) to segment RGB images on two datasets.
To make the network more suitable for each area and scene labels, we
randomly selected 50 images on each area of S3DIS and 10 images
on each area of HOUSE to fine-tune the network. Then, we sampled
the mesh uniformly in space as a point cloud with a sampling size
𝛿 = 0.02 m, and projected points onto their visible images. If a point
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was visible in multiple images, its label was determined by max-voting.
Because we only focused on indoor facades, 3D points with labels wall,
door, window, column, board were retained. The segmentation errors
between these five labels had little effect on our method and the
obtained indoor facade point cloud was sufficient for our subsequent
input owing to the robustness of our method to imperfect data (see
Fig. 5(a) as an example).

7.2.2. Plane segmentation
We used PlaneRCNN (Liu et al., 2019) with the default hyperpa-

rameter to detect plane instances of RGB images on two datasets. The
provided model in PlaneRCNN has been pretrained on Scannet (Dai
et al., 2017), which is also an indoor dataset that mainly contains
single rooms. The scenes in all three datasets are similar, and the
detection results on S3DIS and HOUSE without fine-tuning were ac-
ceptable. Furthermore, due to the content redundancy between images
and the effective fusion in our pipeline, a few segmentation errors were
tolerated (see Fig. 5(b) as an example).

7.2.3. Parameter selection
Our method embeds the high-level semantic information inferred

through deep learning into the reconstruction process based on geo-
metric optimization. The key parameters in the method include line
extending parameter, plane fitting parameters and the energy item
weights in the optimization function. Extending parameter is important
to the selection of the candidate segments. Large extension will create
more candidate line segments, at the same time greatly increasing the
complexity of the calculation and increasing the optimization time
because too many segments increase the difficulty of optimization,
while a small extension will miss planes and cannot obtain the complete
results. We take the first area in the S3DIS dataset as an example and
record the floorplan of different extending parameters. Fig. 6 shows the
different results by gradually increasing the extending parameter. As
shown in the figure, a small extending parameter produces a floorplan
with many missing segments (see green and purple boxes in Fig. 6(a)),
and a large extending parameter obtains an approximate effect with
the parameter we selected, while a moderate extending parameter is
the best. In addition, the optimization time increases with increasing
extending parameter, when the parameters are 0, 0.15 and 0.3, the
optimization time are 484 s, 646 s and 1521 s respectively. For the
plane detection, the major parameter affecting the quality and quantity
of the detected plane is min_points in RANSAC which represents the
minimum number of supporting points in a plane. The higher the
parameter is, the larger and fewer planes are detected, but some small
planes may be missed. The lower the parameter is, the smaller and
more planes are detected, but they may contain some noise. When
dealing with real indoor scenes with a point cloud density of 0.02 m, it
is generally appropriate to set this value to 500 to 2000. Considering
that we need to integrate large planes directly fitted from the point
cloud and small planes inferred from the image as complementary, we



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 490–501J. Han et al.
Fig. 6. Effect of different extending parameters. (a) is the floorplan when the segments
are not extended(0), (b) is the floorplan when the extending ratio is moderate(0.15),
and (c) is the floorplan when the extending ratio is large(0.3). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 7. Effect of different confidence of the image detected plane weight 𝜆3 in Eq. (3)
on S3DIS Area1. (a) is the floorplan when image detected planes are not added. (b)
is the floorplan with the weight we choose(0.2), and (c) is the floorplan with a large
confidence weight(0.4). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

set min_points to 1000 when detecting large planes, and set it to 500
when detecting small planes. In addition, other parameters that affect
the quality of the floorplan are the four energy term weights in Eq. (3).
These weights can be adjusted slightly to fit point clouds of different
qualities. In the experiments, we all use the default set, that is, 𝜆1 = 0.4,
𝜆2 = 0.2, 𝜆3 = 0.2 and 𝜆4 = 0.2. In Eq. (3), the terms 𝐸1, 𝐸2 and 𝐸4 are
essential for generating a reasonable result. Compared with the method
proposed in VecIM (Han et al., 2021), the third term 𝐸3 is added to
control the confidence of the image detected planes. Fig. 7 shows the
different results by gradually increasing the confidence weight 𝜆3 with
𝜆1 = 1 − 𝜆2 − 𝜆3 − 𝜆4, 𝜆2 = 0.2, 𝜆4 = 0.2. When 𝜆3 is small, the small
plane missing in the floorplan is more serious (see green and purple
boxes in Fig. 7(a)). When 𝜆3 is large, parts of the floorplan detected
by geometric plane detection but not detected in the picture plane
detection are missing (see purple boxes in Fig. 7(c)).

7.3. Evaluations on the S3DIS dataset

The S3DIS dataset includes office areas, corridors, open spaces,
etc., with large scale and complex structures. These scenes have dif-
ficulty guaranteeing the 2-manifolds, and thus, we used Eq. (9) as the
constraint and ensured the closure of the floorplan.

7.3.1. Qualitative evaluations
In this section, we qualitatively compared the results of FloorUSG

with some state-of-the-art approaches (Chen et al., 2019; Han et al.,
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2021; Liu et al., 2018) on the first four areas of S3DIS (see Fig. 8).
Since Han et al. (2021) (hereinafter referred to as VecIM) needed to
segment the indoor facade from the point cloud as preprocessing, we
took our segmented points as their input. FloorNet (Liu et al., 2018)
and FloorSP (Chen et al., 2019) took the point cloud of the whole
scene as input, and we uniformly sampled the dense mesh and input
the sampling point cloud into their pipeline.

FloorNet (Liu et al., 2018) and FloorSP (Chen et al., 2019) first
inferred primitive information via a neural network and obtained floor-
plans by optimization. As seen in Fig. 8, their results were not satisfac-
tory. This was largely due to the poor primitive inference on the point
density map. FloorNet only handled scenes with the Manhattan assump-
tion, and the two methods applied a low-resolution map (256*256),
which severely limited the complexity of scenes and the recovery of
detailed structures. Instead of relying on delicate corner/edge/room
detection on the planar graph, we effectively utilized the 2D plane
instances to enhance the geometric detection and optimization, making
us reconstruct more accurate results on large-scale scenes.

VecIM (Han et al., 2021) adopted a pure geometric optimization
method, which mainly relied on RANSAC (Schnabel et al., 2007) to
detect primitives and obtained the floorplan via a global optimization.
Due to the detection instability of RANSAC and missing points in
the point cloud, it was not easy for this method to reconstruct real
scenes with complex structures robustly and completely. In contrast,
we took into account the 2D semantics and deeply integrated it with
the 3D geometry of the point cloud, making our method achieve better
reconstruction results. On the one hand, we used 2D plane instances
to effectively supplement the missing detection of RANSAC (see red
segments in the second row of Fig. 8). The fusion of 2D and 3D
primitives gave our method a stronger ability to capture scene details,
even in large-scale scenes with complex structures. On the other hand,
we increased the selection probability of weak but real structures by
combining both the plane confidence of points and the quality of point
cloud during optimization (see green boxes in Figs. 8,9). This allowed
our method to offer high robustness for imperfect data.

7.3.2. Quantitative evaluations
Considering that there is no 2D floorplan ground truth and that both

the ceiling and floor are horizontal on S3DIS, we restored 3D models
by lifting the floorplan of ours and VecIM to the average height of the
ceiling and floor on the last two areas of S3DIS. The 3D models were
compared to the indoor facade ground truth. Here, we also compared
the results of Polyfit (Nan and Wonka, 2017), which is a general method
for reconstructing 3D holistic models. Since this method is suitable for
closed scenes and the clutter in the scene disturbs the plane detection,
we uniformly sampled the mesh in space with the ground truth ceiling,
floor, wall, door, window, column, board labels and took the sampling
point cloud as the input of Polyfit.

For quantitative comparison, we calculated the Hausdorff distance
from the indoor facade ground truth to the 3D model as the recon-
struction error. As seen in Fig. 10, our models are closest to the 3D
ground truth with the lowest mean error and root mean square. Due
to the two-manifold constraint forced by Polyfit, at least one room
failed to be recovered when a thin wall was shared by two rooms. In
addition, similar to VecIM, Polyfit is also a method that only considers
the geometry of data, making it difficult to robustly handle data of
different qualities. In contrast, our approach fused high-level semantics
at different phases to increase the robustness of the algorithm and the
reconstruction quality of models.

7.4. Evaluations on the HOUSE dataset

7.4.1. Qualitative evaluations
The public House dataset contains 100 houses. Among all the data,

we selected scenes with different complexity and characteristics for
evaluation and made quantitative and qualitative comparisons to prove
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Fig. 8. Qualitative comparisons on S3DIS. The first row shows the indoor facade ground truth. The second row shows the fusion of candidates in our method. The black is from
direct RANSAC, and the red is from image inference which is a great supplement. The third row is our final floorplan. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 9. RANSAC results of VecIM (Han et al., 2021) on S3DIS. The purple emphasizes the missing plane detection, and the green emphasizes the plane detection with sparse
supporting points. In these conditions, VecIM lost the detailed structures while our method recovered these areas more completely and accurately (see the third and fourth rows
of Fig. 8). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the robustness and reconstruction accuracy of the method in such
scenes. Due to the observation that the HOUSE dataset mainly contains
several small closed rooms with relatively simple structures, we used
Eq. (10) to restrict the 2-manifold of the scenes, that is, to ensure that
the walls of each room were not shared with other rooms.

Considering that FloorNet (Liu et al., 2018) only dealt with Man-
hattan scenes and the semantic segmentation results on the HOUSE
dataset were poor which severely degraded the quality of the generated
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floorplan, we only compared the proposed method with VecIM (Han
et al., 2021) and FloorSP (Chen et al., 2019) on this dataset. As in the
S3DIS dataset, we used the segmented facade points as the input of
VecIM and the point cloud uniformly sampled from the dense mesh as
the input of FloorSP.

Fig. 11 shows the comparison of the reconstruction results on four
scenes in the HOUSE dataset. As seen, FloorSP did not consider the
wall thickness and some structural details. The ground truth labeled by
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Fig. 10. Quantitative comparison on S3DIS. e is the mean of the Hausdorff distance from the indoor facade ground truth to the 3D model, and rms is the root mean square. For
the same comparison, we removed the ceiling and floor of the model in Polyfit. Compared with others, our method recovered results most accurately.
it paid more attention to restoring the concise outline of the room, and
some areas were inconsistent with the scene point cloud. The floorplan
generated by this method was close to the ground truth, but the
reconstruction results on some non-Manhattan structures were poor, as
shown in the last two scenes in Fig. 11. In contrast, our method and
VecIM focused on the restoration of more complete and finer grained
facade structures, and the results were closer to the real scene and more
suitable for some applications that require high reconstruction quality,
such as Building Information Modeling (BIM). Due to the addition of
indoor facades inferred from RGB images, our method reconstructed
more structural details in the scene, such as columns, than VecIM.

Although our method needs to infer plane instances from images,
it is a relatively simple task and the inference results of the existing
plane detection networks in indoor scenes are not bad. On the other
hand, both the plane fusion and the global geometric optimization with
different energy terms to balance in our method enhance the robustness
and the quality of semantic inference. Therefore, different from many
deep-learning methods that heavily rely on training data to guarantee
reliable inference, our approach can generate floorplans with good
quality including detailed structures whether in large-scale scenes with
complex structures or small home scenes.

7.4.2. Quantitative evaluations
The ground truth in the HOUSE dataset pays more attention to

restoring the geometric contour and connection relationship of the
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rooms, while our method pays more attention to restoring the ge-
ometric details of the room. Therefore, we do not use the ground
truth value of the HOUSE dataset, but restore the floorplan to a three-
dimensional structure. Then we compare it with the original point
cloud, and calculate its Hausdorff distance to judge the reconstruction
accuracy.

For the deep learning method, FloorSP uses a small resolution map
(256*256), which results in low resolution reconstruction results and
loss of structural details, and its accuracy is lower than the actual
physical scale corresponding to a pixel. Therefore, we only compare
with VecIM and Polyfit. Similar to the S3DIS dataset, we calculated
the Hausdorff distance from the facade point cloud ground truth to the
3D model as the reconstruction error. In the HOUSE dataset, shown
in Fig. 12, FloorUSG is also the closest to the ground truth, while the
reconstruction results of VecIM and Polyfit are both missing to some
degree.

7.5. Running time

We recorded the time spent by our method in each part of the whole
process, including the time spent in plane extraction on images, plane
extraction directly with RANSAC in point clouds and final optimization
in Table 1. As we can see, the image plane detection takes the most
time in our method while it takes less time in other steps. However, it
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Fig. 11. Comparison of reconstruction results on four scenes in the HOUSE dataset. The first row displays the scene point cloud derived from panoramic RGB-D scans. The second

row displays the 2D floorplan ground truth labeled by FloorSP. The other rows are the results of different methods.
is worth noting that the introduction of image plane detection comple-
ments small planes, so that geometric plane detection is more targeted
at large planes, thus spending less time. In addition, we also tested the
time spent by different methods on the S3DIS and HOUSE datasets.
Among them, FloorNet makes predictions directly on the images, but it
needs to meet the Manhattan hypothesis, and cannot obtain results on
some scenes. Therefore, we mainly compare with VecIM, Polyfit and
FloorSP. The results are also shown in Table 1. Polyfit is optimized in
3D space, so its time is closely related to the number of fitted planes. We
make a compromise between precision and time efficiency. As shown
in Table 1, our method can achieve time efficiency similar to VecIM,
but is slower than FloorSP.

7.6. Limitations

Although the plane detection in the image is used to supplement the
plane detection in geometry, so that the sparse and uneven point cloud
information can be effectively used, and the effect has also been verified
by experiments, the method also has some limitations. First, the image
detected plane is related to the projection of 2D images to 3D meshes,
which depends on the quality of the mesh generated by the model. If
the initial mesh does not exist somewhere, even if it is detected at the
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image level, it cannot be reconstructed. Therefore, the sparse part of
the point clouds can be supplemented and strengthened, but missing
planes with no points cannot be reconstructed, as shown in Fig. 13(a).
Second, the purpose of image plane detection is to compensate for
the lack of geometric detection at the sparse point clouds. Therefore,
when the image fails to cover the sparse point cloud or detect the
plane successfully, the missing plane cannot be detected, as shown in
Fig. 13(b).

8. Conclusion

We propose an automatic algorithm to reconstruct floorplans from
mesh and RGB images. Different from the pure geometric optimiza-
tion (Han et al., 2021; Nan and Wonka, 2017) and the two-stage
approaches (Chen et al., 2019; Liu et al., 2018) relying on the low-
resolution point density map, our method embeds 2D plane instances
inferred from images into an unambiguously interpretable optimization
problem, and has the ability to recover high-quality floorplans in both
large-scale complex indoor scenes and small-scale home scenes robustly
and accurately, as shown in the experiments.

In future work, we would like to extend the method to recover
floorplans with more semantic details, such as doors and windows.
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Fig. 12. Quantitative comparison on HOUSE. e is the mean of the Hausdorff distance from the indoor facade ground truth to the 3D model, and rms is the root mean square. As
shown, our method performed better than any other methods.
Table 1
The computational time of each step in our method, as well as the computational time of the compared methods on S3DIS dataset and HOUSE
dataset. In the table, 𝑇 1 is the time for image plane detection, 𝑇 2 is the time for geometric plane detection, 𝑇 3 is the time for merging segments,
𝑇 4 is the time for optimization, and 𝑇𝑂𝑇 is the total running time of our method.
Dataset 𝑇 1 (s) 𝑇 2 (s) 𝑇 3 (s) 𝑇 4 (s) 𝑇𝑂𝑇 (s) VecIM (s) Polyfit (s) FloorSP (s)

S3DIS Area1 485 335 116 646 1582 2057 2340 1421
S3DIS Area2 910 275 66 108 1359 2284 2358 1493
S3DIS Area3 1286 234 29 221 1752 1259 1642 1869
S3DIS Area4 492 159 107 474 1232 2575 2372 2190
S3DIS Area5 722 336 100 328 1486 2604 2890 649
S3DIS Area6 431 294 71 488 1284 2019 2365 2750
HOUSE1 79 107 18 22 226 380 456 810
HOUSE2 104 205 34 31 374 566 648 469
HOUSE3 64 72 7 9 152 286 432 259
HOUSE4 58 103 13 11 185 281 230 1100
Fig. 13. Limitations: When the mesh of the scene is missing, or there is mesh but the corresponding image is missing, the reconstruction method will be invalid.
In addition, we plan to integrate scene segmentation with plane seg-
mentation into one network to infer images more deeply. Furthermore,
although there are many network algorithms to restore the true depth
from images, these algorithms do not have good practicability and
generalization. The reconstruction of missing areas still needs further
exploration, which is also the focus of our future work.
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